Полупромышленные системы Mitsubishi еlеctric серии ZUBа-DаN были представлены в прошлом выпуске журнала. Они отличаются от традиционных кондиционеров, имеющих режим обогрева, тем, что теплопроизводительность новой системы сохраняет номинальное значение вплоть до температуры наружного воздуха – 15°С. При дальнейшем понижении температуры (завод-изготовитель гарантирует работоспособность системы до температуры – 25°С) теплопроизводительность начинает уменьшаться.

Но при этом сохраняется преимущество, как перед обычными системами, так и перед энергоэффективными системами серии POWеR INVеRTеR. Режим оттаивания наружного теплообменника, которого избежать в подобных системах невозможно, происходит быстро и совершенно незаметно для пользователя. Традиционным решением задачи увеличения теплопроизводительности системы при низких температурах наружного воздуха является впрыск газообразного хладагента в компрессор. Для этого между конденсатором и испарителем в точке промежуточного давления устанавливается сепаратор «жидкость-газ», верхний вывод которого соединяется со штуцером впрыска в компрессор. В результате количество газообразного хладагента, циркулирующего через конденсатор, увеличивается, и растет теплопроизводительность системы. Однако такие системы отличаются нестабильной работой. Объем впрыска колеблется в зависимости от давления в сепараторе и производительности компрессора, а уровень заполнения отделителя меняется в очень широких пределах: от минимального уровня до полного заполнения жидким хладагентом. Рисунок 1. В системах применяется метод парожидкостной инжекции. В режиме обогрева давление жидкого хладагента, выходящего из конденсатора, роль которого выполняет теплообменник внутреннего блока, немного уменьшается с помощью расширительного вентиля LеV B. Парожидкостная смесь (точка 3 на рисунке 1) поступает в ресивер «Powеr Rеcеivеr». Внутри ресивера проходит линия всасывания, и осуществляется обмен теплотой с газообразным хладагентом низкого давления. За счет этого температура смеси снова понижается (точка 4 на рисунке 1) и жидкость поступает на выход ресивера. Далее некоторое количество жидкого хладагента ответвляется через расширительный вентиль LеV C в цепь инжекции. Часть жидкости испаряется, а температура образующейся смеси понижается. За счет этого охлаждается основной поток жидкого хладагента, проходящий через теплообменник HIC (точка 5 на рисунке 1). После дросселирования с помощью расширительного вентиля LеV а (точка 6 на рисунке 1) смесь жидкого хладагента и образовавшегося в процессе понижения давления пара поступает в испаритель, то есть теплообменник наружного блока. За счет низкой температуры испарения тепло передается от наружного воздуха к хладагенту, и жидкая фаза в смеси полностью испаряется (точка 7 на рисунке 1). Проходя через трубу низкого давления в ресивере «Powеr Rеcеivеr», перегрев газообразного хладагента увеличивается, и он поступает в компрессор. Кроме того, этот ресивер сглаживает колебания промежуточного давления при флуктуациях внешней тепловой нагрузки, а также гарантирует подачу на расширительный вентиль цепи инжекции только жидкого хладагента, что стабилизирует работу этой цепи. Часть жидкого хладагента, ответвленная от основного потока в цепь инжекции, превращается в парожидкостную смесь среднего давления. При этом температура смеси понижается, и она подается через специальный штуцер инжекции в компрессор. В верхней неподвижной спирали компрессора предусмотрены отверстия для впрыска хладагента на промежуточном этапе сжатия (рисунок 2). Рисунок 2. Расширительный вентиль LеV B задает величину переохлаждения хладагента в конденсаторе. Вентиль LеV а определяет перегрев в испарителе, а LеV C поддерживает температуру перегретого пара на выходе компрессора около 90°С. Это происходит за счет того, что, попадая через цепи инжекции в замкнутую область между спиралями компрессора, двухфазная смесь перемешивается с газообразным горячим хладагентом, и жидкость из смеси полностью испаряется. Температура газа понижается. Регулируя состав парожидкостной смеси, можно контролировать температуру нагнетания компрессора. Далее мы увидим, что это позволяет не только избежать перегрева компрессора, но и оптимизировать теплопроизводительность конденсатора. Эффект от инжекции газообразного хладагента заключается в следующем. Поток хладагента через компрессор складывается из хладагента, поступающего через линию всасывания, и хладагента, проходящего через

06.03.2021